CONTENTS

Preface v

Chapter 1. Quick Reference 1
 Influence of Horse Behavior on Design 1
 Horse Size Estimation 2
 Data Tables 3

Chapter 2. Site Planning 5
 Site Selection 6
 Site Layout 7
 Separation Distances 8
 Zone Planning 8
 Locating Buildings and Activity Areas 10
 Vehicle Access and Parking Areas 12
 Snow Removal 18
 Landscaping 19
 Wind and Snow Control 20
 Accounting for Prevailing Winds 20
 Shelterbelts 20
 Exterior Lighting 22

Chapter 3. Stables 23
 Basic Planning 23
 Floor Plan Options 25
 Building Framing Styles 26
 Roof Covering Options 30
 Construction Materials 30
 General Interior Design 33
 Stalls 33
 Mangers, Grain Boxes, and Hayracks 40
 Drinking Water Supply 42
 Interior Construction 42
 Specialty Areas 47
 Floors and Drainage 56
 Floor Types 57
 Floor Construction and Drainage 62

Chapter 4. Pastures, Paddocks, Pens, and Shelters 67
 Pastures and Paddocks 67
 Selecting Grasses and Legumes 68
 Sizing and Laying Out the Pasture 68
 Managing the Pasture 69
 Pens 70
 Free-Choice Shelter 70
 Buildings 71
 Sunshade 74
 Windbreak Fences 77

Chapter 5. Arenas and Training Facilities 81
 Arena Design 81
 Outdoor Training Areas 81
 Indoor Arenas 82
 Round Pens 84
 Surfaces 85
 General Surface Design 85
 Types of Floor Surfaces 88
 Less Desirable Footing Materials 90
 Dust Management 90
 Surface Maintenance 91

Chapter 6. Breeding and Foaling Facilities 93
 Design Considerations 93
 Teasing Systems 93
 Hand Teasing 94
 Group Teasing Methods 94
 Breeding Shed 96
 Phantom Mare 97
 Breeding Stocks 98
 Wash Area 99
 Breeding Laboratory 100
 Specifications for Foaling Stalls 102
7. Environmental Control 103
- Ventilation Basics 103
 - Environmental Comfort Zones 104
 - Airborne Contaminants 105
- Ventilation Systems 106
 - Natural Ventilation 107
 - Mechanical Ventilation 115
- Cold Weather Temperature Control 121
 - Insulation 121
 - Supplemental Heating 126

8. Manure Management 129
- Manure Characteristics 130
 - Excretions 130
 - Bedding 130
 - Waste Materials 132
- Handling 132
- Storage 133
 - Siting and Managing the Manure Storage 134
 - Sizing 135
 - Construction of the Manure Storage 135
- Manure Utilization 136
 - Nutrient Management Plan 137
 - Land Application 138
 - Contract or Commercial Haulers 139
 - Pasture or Field-kept Horses 139
 - Composting Treatment 139
 - Composting Management Basics 140
 - Composter Designs 142

9. Bulk Feed and Bedding Storage 147
- Bulk Feed 147
- Forages 148
- Hay and Bedding 148

10. Fences 153
- Planning 153
 - Selecting and sizing a pasture or Paddock 155
 - Basic Design Guidelines 156
 - Managing Fenced Areas 156
- Fence Types 156
 - Wood 157
 - Wire and Metal Fencing 159
 - Non-metal Synthetic Fences 163
- Fences to Avoid 165
- Wood Posts 165
- Gates, Passages and Latches 167

11. Utilities 169
- Electrical 169
 - Wiring 169
 - Lighting 172
 - Electric Motors 175
 - Lightning Protection 175
 - Electrical Safety 176
 - Grounding 176
 - Standby Power 177
 - Alarm Systems 179
 - Water 179
 - Water Quality 179
 - Quantity and Storage 181
 - Distribution 182
 - Heating Devices 187
 - Heating Source 188
 - Venting Heaters 188
 - Heater Safety 190
 - Wastewater Treatment 190

12. Fire Protection 193
- Fire Causes 194
- Fire Prevention and Planning 195
 - Site Layout 196
 - Buildings 197
 - Housekeeping 198
 - Special Fire Safety Design Features 198
 - Fire Detection 200
 - Fire Suppression 201
 - Fire Extinguishers 201
 - Sprinklers 202
 - Fire Protection Quick Summary 203

13. Emergency Response Planning 205
- Preventing Emergencies 205
- Preparing for Emergencies 206
 - Emergency Action Plans 206
 - Emergency Kits 207
 - Taking Action During and Emergency 210
 - Reviewing Actions and Procedures after Emergencies 210

Appendix
- A. Common Fly Species Found in Stables 211
- B. General Construction Plans 213
- C. Wood Preservatives 221
- References and Resources 227
- Index 229
The daily activities on horse farms vary according to a farm’s primary function, be it breeding, training, or public use. Though each farm requires specialized facilities, the basic goals of facility design and construction are similar. Facilities should promote safety as well as the efficient care and handling of horses. Well-planned facilities allow for lower operational costs and an overall increased efficiency of facilities. Poorly planned or improperly constructed facilities interfere with daily operations, increase costs such as labor and maintenance, and compromise the safety and health of both horses and people.

Influence of Horse Behavior on Design

To develop well planned facilities, a designer must understand horse psychology and behavior. When designing and constructing a facility, keep in mind that the expected behavior of horses will vary under different situations. It is also important to realize that horses have traits that differ from other livestock species. People who have little previous experience with horses and/or the planned activities of the farm should research horse behavior and training. Safe and sound designs respect horses’ uniqueness and provide convenience and safety for both horse and handler.

A horse’s natural defense mechanism is the fight or flight instinct. Horses are generally non-aggressive, but when threatened, excited, impatient, scared, or in pain they will typically first try to escape by running away. If escape is not possible, they will fight by kicking, striking, or biting. Those defenses explain the high-strung, excitable nature of the horse. The degree of excitability and nervousness varies between individuals and blood lines. Properly designed handling facilities allow for horse and handler safety while diminishing the horses’ instinct or desire to escape by running through or jumping over barriers. Some classes of horses, such as breeding stallions, can be naturally aggressive and require specialized facility design to guard against horse or handler injury.

General horse traits include:

- Major preoccupation with food and security. A stable area typically represents an area for food and security. An excited horse may re-enter a burning barn because of this connection between food and security.
- Herd instinct with its security and the acceptance of discipline and a degree of submission. This instinct is a prime factor in training.
- Low pain tolerance. This low pain tolerance is sometimes used by people to control and train horses.
- Desire to stand to rest or doze while standing but will lie down for prolonged sleep. Sleeping patterns mean that horses need a comfortable area in which to stand and lie down.
- Highly developed senses of sight, smell, and hearing. Horses have an excellent range of vision. Their vision range is 340°, which makes them very sensitive to motion.
CHAPTER 2

Site Planning

types of vehicles that will be on the site is needed.

Once the concepts of separation distances, work zones, and vehicular requirements are understood, placing buildings or activity areas on a map using information from a new or existing site can help one visualize how everything will fit together and identify problem areas. Even physically staking out the locations of buildings or activity areas will help to visualize the layout. When laying out the buildings or activity areas, be sure to plan for any landscaping that will help enhance the aesthetics of the site.

Separation Distances

When planning, assume that activities at the site will double in size over time. Provide space for new buildings, clearance between buildings, and expansion. Separate all buildings by at least 35 feet for access and snow storage. Naturally ventilated buildings require 50 feet or more clearance. Fire protection will require at least 75 feet of clearance. Consider space needs for vehicle access and parking. A good way to assure adequate space for future expansion is to develop a complete site plan that shows the location of all current facilities and area for future expansion.

Zone Planning

Buildings are located in one of four specific areas or zones on the site, Figure 2-1. Zones are in about 100-foot increments. Zone 1 is for family living, lawn, recreation, gardens, office and visitor parking. Protect Zone 1 from odor, dust, insects, and unwanted visitors by locating other centers of activity outside Zone 1. The home should be closer to public roads than other buildings, especially large ones that tend to dominate or obscure the view of the house. A family living area at a separate site is a consideration for larger farms.

Zone 2 is for machinery storage, a repair shop, and related activities that are relatively quiet, dry and odor free. Zone 2 typically includes much of the driveway, service yard, and temporary parking space. Fuel storage and other more hazardous activities may be located to the far side of Zone 2—away from the family living area.

Zone 3 may contain a small stable, hay, grain, and bedding—activities that have frequent noise, dust, and traffic and that need daily labor. The electric power distribution pole, propane storage, and wagon parking may fit in either Zone 2 or 3.

Zone 4 is the major area for horse activities and other areas needing expansion space, access, feed, and manure management. Activities that produce noise, dust, odors, and traffic are located in Zone 4.

The location of the public road with respect to the site affects the Zone 1 living area location and overall site layout. For example, in the upper Midwest, it is usually preferable to have the driveway enter the farmstead from the south. This allows for an

Separation distances between buildings and neighboring features depend on management, operation size, pollution potential, and appearance.

- **Operation size.**
 Larger operations create more noise, odors, dust, and traffic requiring greater separation distances. For example, a bulk hay and grain storage area for a few horses has less impact on the living area than a site with many horses that requires frequent activity of tractors and large trucks.

- **Pollution hazards.**
 Odor, dust, noise, and manure disposal problems can be associated with larger sites with many horses. Odors from large-scale equine operations can often be detected one-half mile downwind.

- **Appearance.**
 A neat and attractive farmstead is very important. Consider landscaping that will enhance the site’s appearance, especially near roadways, and locate less attractive facilities and activities farther away.

- **Management needs.**
 Locate horse facilities at least 200 feet from the family living area.
undisturbed tree windbreak along the west and north to protect the farmstead from prevailing northwesterly winter winds—yet allow prevailing south winds in summer to reach into the farmstead. Figure 2-1 shows recommended farmstead area arrangements in relation to the driveway/public road access.

The direction of the site from the main road affects layout. Layout assumes prevailing winter winds are from the north and west, and prevailing summer winds are from the southwest, south, or east.

When a family living area does not or will not exist on a site, an office building, stable or arena may be the first building that is observed by people entering the site. Similar to zone planning for a family living area, the first building that is observed by people entering the site will become the focus area for the site and will be located in Zone 1. This

Figure 2-1 Development of a site with respect to a main road and common wind conditions.

The direction of the site from the main road affects layout. Layout assumes prevailing winter winds are from the north and west and prevailing summer winds are from the southwest, south, or east.
mow, then be aware of the effect that this hay can have on ventilation and the fire hazard concerns. Chapter 7. Environmental Control and Chapter 12. Fire Protection address these issues.

The most common type of framing is light, clear-span braced rafters, supported on the barn wall and anchored to the mow floor joists to resist horizontal forces and uplift.

Monitor roof

The full monitor roof is made up of two shed sections and a gable section for the center portion of the roof. The vertical wall area separating the shed and gable roof provides natural light and ventilation. The monitor shape is seldom used for horse buildings less than 36 feet wide. The center section may be wider than the sheds or the reverse may be true. Its use matches that of clear-span buildings of similar size with side extensions. Framing is similar to that for shed and gable roofs.

Gothic roof

The Gothic roof is a pointed arch formed by two similar curved roof sections meeting at a center ridge. It is used on two-story barns and also for separate free-standing structures to provide shelter at ground level. It is adaptable to both narrow and wide structures. Similar to the gambrel style roof, this roof style has...
space for storing supplements, salt blocks, medications, minerals, vitamins, grain crimper, feed carts, scales, and any other items that are pertinent to the feeding program. Keep feed storage areas free of batteries, petroleum products, chemicals, and other non-feed items. A set of small scales (10 pounds) and a scoop are necessary for accurate daily feeding of concentrates and medicated feeds. Large scales (30 pounds) can allow for accurate measuring of total rations, Figure 3-30. The feed room can be combined with the tack room if feed is stored in containers to promote a clean room.

Store bagged feed in a rodent- and bird-proof area. Store bags on pallets that leave an air space under the bags to prevent moisture migration from the floor to the bags. In order to maintain rodent proofing and allow for cleaning up spilled feed, a concrete floor is desirable. Once bags are opened, it is desirable to empty a whole bag into a plastic or metal container with a tight fitting lid rather than feeding directly from an open sack each day, Figure 3-31. Measuring feed from an open bag
For outdoor arenas, select a good site that has, or can be modified to obtain, proper drainage and surface conditions for the riding events, Figure 5-2. Having a few different site options is a good idea. Investigate the soil at each proposed site. Evaluate the cost to obtain the desired riding surface at each site in addition to its accessibility to other buildings and activities at the site. Sometimes a desirable location does not have good soil for constructing an arena. Making the site useful can be cost prohibitive.

Site grading, sub-base, and base materials for an outdoor arena should extend at least 10 feet beyond the perimeter of the planned final arena size. Because an outdoor arena needs to be able to shed water, sloping the base and top surface as shown in Figure 5-7c is important for good drainage. A 2% slope in the direction of the shortest dimension is the most cost effective, with options shown in Figure 5-7a and 5-7b.

Indoor Arenas

Indoor arenas are basically clear span structures that are part of, attached to, or close to the main horse barn. When designing an indoor arena, a critical dimension to consider is ceiling height, which is the
Proper design and management of the manure handling and containment system are essential to pollution control when operating any animal facility. Proper handling of manure is essential, especially as more horse facilities are located in suburban areas. Stables must be good neighbors. Failure to provide adequate manure collection, handling, and storage facilities in conjunction with adequate land area for proper application and utilization of manure nutrients could adversely affect air, water, and land resources. Also, degraded stream water quality and fish kills can result from manure and feed waste entering waterways from surface runoff. Improperly designed or constructed manure storage facilities, or over-application of nitrogen or phosphorus can lead to groundwater pollution. Many horse owners are conscious of manure’s pollution potential and have taken steps to control it.

Independent of operation size or location, a proper manure management system and plan are essential.

A manure management system includes collecting, handling and transferring, storing, possibly treating, and marketing or land applying the manure. The collection of horse manure is pretty simple because it is almost always collected on the floor of a stall or inside an outdoor shed. Knowing the characteristics of horse manure is key to all the other aspects of the manure handling system.

Because horse manure is almost always in a solid form and most of the time with bedding, knowing common solid manure handling practices to handle and transfer the manure from the stall or shed floor to another location is essential. If manure is stored or treated by composting, then knowing the volume of manure is important. If the manure is marketed or applied directly to nearby land, knowing the nutrient content of the manure is key.

A complete manure management system has the following goals:
- Avoid pollution of soil, groundwater, or surface water.
- Reduce odors and dust.
- Control insects, rodents, and other pests.
- Comply with appropriate state and local regulations pertaining to manure handling.
- Balance capital investment, cash-flow requirements, labor, and nutrient use.

The remainder of this chapter will discuss:
- Basic manure characteristics.
- Bedding.
- Manure-handling systems.
- Locating, sizing, and designing a manure storage.
- Sizing, designing, and operating a composting treatment system and marketing tips to sell compost.
- Land application of manure.
- Overall system management to reduce odors, dust, and flies.